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ABSTRACT 
 

Automated support systems may be useful tools for aiding situation assessment in 
complex environments such as the military battlefield, medical diagnosis, and crisis 
management. These environments are marked by large amounts of information which 
often must be weighted and integrated into a meaningful judgment or assessment. Two 
experiments examined the effects of attention cueing and decision aiding on information 
integration tasks in static battlefield situations. In the first experiment, sixteen 
participants completed a resource allocation task for 56 battlefield scenarios (based on 
perceived threats). For half the trials, an automated system guided their attention to 
high-relevance information. On 2 trials a memory probe was administered to assess the 
depth of processing of information, and on the final trial an automation failure was 
presented. Results demonstrated an overall allocation performance advantage for 
automation but poorer recall for automation-enhanced units. Half of the participants 
failed to attend to the system failure. Those participants who detected the failure were 
inferred to have processed all of the cues more deeply based on their performance on the 
memory trials. In the second part, 12 participants completed the same task using an 
automated diagnostic aid (instead of the attention cueing). Again, performance was 
improved when using automation, more so than in experiment 1. However, there were 
costs associated with the processing of highly relevant information in these conditions. 
The costs and benefits of automated cueing and diagnostic aiding are discussed. 
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INTRODUCTION 
 
Complex environments are often characterized by large amounts of information as well 
as multiple dynamic and changing components. A medical doctor must use information 
from a number of different sources (e.g., various tests, case histories) when making a 
diagnosis. Air traffic controllers must coordinate many bits of information in order to 
maintain a complete picture of the current situation. Regardless of the context, each of 
these components or sources of information may have significant impact on operator 
decision-making and performance. The extent to which operators in these environments 
can successfully integrate these sources of information into a coherent situation 
assessment will directly impact their overall situation awareness as well as their 
subsequent decisions, actions, and overall performance (e.g., Graham & Matthews, 
1999). Though we focus our discussion on the tactical battlefield environment in this 
paper, the concepts of situation awareness and assessment, information integration, and 
automation can be readily applied to other domains.  
 
 In the battlefield environment, effective commanders must utilize information 
regarding wide-ranging tactical parameters (e.g., the location of one’s own unit in 
relation to other units (both friendly and enemy); the strength, disposition, and 
weaknesses of opposing forces; the condition of various avenues of approach), 
organizational variables (e.g., the level of command; military doctrine; operational 
orders), environmental factors (e.g., terrain; weather), and various other METT-T 
(Mission, Enemy, Terrain, Troops, and Time) planning factors (Burba, 1999; Endsley et 
al., 2000; Evans, 1999). A particularly important component is the reliability of the 
different sources of information being used in the tactical diagnosis (Wickens et al., 1999; 
Shattuck et al., 2001). Operations manuals stress that the identification of these and other 
variables (hazards) is the first step in risk assessment (and the subsequent tactical 
decisions) (USMC, 1998). Endsley et al. (2000) identify these factors as strong 
contributors to the establishment and maintenance of situation awareness in the infantry 
operational environment. As such, commanders’ complete and accurate understanding 
of these factors will impact their perceived tactical risk, subsequent force deployment 
and protection, and other command and control decisions. 
 
 Situation awareness has been the focus of numerous research programs in recent 
years (see Endsley & Garland, 2000). Endsley’s (1995) 3-level model has perhaps been 
the most frequently cited model of situation awareness (SA). SA involves “the 
perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning and the projection of their status in the near future” (p. 
36). Level 1 SA involves the perception of cues and elements pertaining to the current 
situation. These cues are often referred to as the ‘raw data’ that are available in our 
surrounding environment (e.g., military reports regarding enemy location and strength; 
map displays depicting terrain information). Level 2 SA involves the integration and 
interpretation of the perceived information (from level 1) into a coherent understanding 
of the current situation (comprehension). The final level (3) of SA involves the projection 
of current events into the near future (e.g., estimating enemy intent). This level requires 
a high degree of understanding of the current situational parameters (level 2) and is 
tightly coupled with operator experience. According to Endsley (2000), SA is considered 
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the main precursor to decision-making, however good SA does not necessarily translate 
to good decision-making as the latter involves the appropriate weighing of risks and 
values. 
 
 The importance of good SA in the complex, high information battlefield 
environment (sometimes termed battlefield visualization) is readily apparent and has 
been acknowledged in the literature and addressed though various research approaches, 
including display frame of reference and automated decision aiding (see, e.g., Barnes et 
al., 2001; Thomas et al., 1999; Wickens & Rose, 2001). These currents (SA, information 
integration, and automated SA aids) provide the framework for the present research. 
 
 
Information Integration from Multiple Sources 

In establishing situation awareness or in any given decision-making or judgment task, 
people use multiple sources of information to form a hypothesis (or belief in a given 
hypothesis) regarding the situation or task at hand (Wickens et al., 1999). In many 
instances the information is derived from qualitatively different sources of information 
(e.g., radio reports; previous knowledge; map displays). Shattuck and his colleagues 
(Shattuck et al., 2000, 2001) note that information integration in the battlefield 
environment will be based largely on contextual factors but also on operational orders, 
doctrine, and expertise. 

 As Figure 1 shows, the raw data (or information cues) being used in diagnosis will 
each have an objective value (or contribution) to the given belief or hypothesis. That is, 
each cue will have an information value which will bear a specified relationship to the 
hypothesis, which is a function of the diagnosticity of the cue (the relative importance) 
and the reliability of the cue (see, e.g., Barnett & Wickens, 1988). The reliability of the cue 
will depend on a number of factors (e.g., real-world uncertainties, failures in sensors, 
failures in automation; Wickens et al., 1999). It follows that each cue will vary in its 
objective information value (see Figure 1), with some cues offering more weight to a 
given assessment than others (e.g., in the military context, the presence of a nearby 
enemy is a stronger indicator of a potential attack than is a weather forecast). When 
observers utilize these cues (integrates them) in making a judgment or assessment, they 
will impose subjective weights to each cue (based on knowledge or previous 
experience), which may or may not reflect the true objective values. The means by which 
an observer uses these cues in making a judgment will vary across individuals and 
circumstances. 



 

 

4 

 

 

 

 

 

 

 

 

Figure 1. Model of cue integration and belief formation. After Brunswikian lens model 
(Kirlik, 1995). 

 

 This analysis is consistent with the Brunswikian lens model, where a given set of 
cues bear specified relations to an environmental criterion (to be judged; e.g., judging 
the threat of an enemy attack; Brunswik, 1952; Hammond, 1966; Kirlik, 1995). The cues 
(e.g., strength of the enemy force; condition of avenue of approach) and their relation to 
the criterion will vary as will the ways in which an observer will utilize the cues in 
making a judgment. Using threat assessment as an example, the cues will contribute 
differentially to the assessed belief in the outcome “an attack will occur”. An observer 
may utilize these cues in a different fashion, with different weights to arrive at the same 
(or possibly different) conclusion. The extent to which observers can calibrate (i.e., match 
their subjective weightings of the cues to their objective values) will determine the 
overall quality of their SA, judgment, or decision (Wickens et al., 1999). Unfortunately, 
human observers have limited cognitive, perceptual, and attentional abilities that impact 
their ability to process large amounts of information. The integration task places high 
demands on selective and divided attention (attentional resources; Wickens & Carswell, 
1995) as well as working memory. In some cases, observers will cope with high cognitive 
demands by utilizing the pattern of cues to estimate the state of the world. These 
patterns of diagnosis are linked to expertise and have been labeled recognition-primed 
decision-making (RPD; Klein, 1989). As such, performance in this cue-integration 
context will depend, not only on the appropriate calibration of the various information 
cues to the predicted outcome but also on an observer’s ability to allocate attention to 
various cues accordingly.  

 People may use heuristics when confronted with difficult cue integration tasks, 
particularly under time pressure. One example is the ‘as if’ heuristic by which people 
will treat differentially weighted cues as if they were of equal value in order to simplify 
the process of diagnosing a given set of information cues (e.g., Kahneman & Tversky, 
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1973; Slovic et al., 1977). In many complex environments, this heuristic may have 
important repercussions. For example, in assessing the likelihood of an enemy attack, a 
commander may afford enemy strength and accessibility the same relative importance 
in their tactical assessment where it is inappropriate to do so. Such cognitive short cuts 
or simplifications may be utilized under conditions of high cognitive load (workload) or 
time pressure, when there are fewer available resources with which to integrate the 
relevant pieces of information (Wickens & Hollands, 2000). Research has shown that as 
the number of information sources increases, people will not typically utilize more than 
a small subset of cues, even though the extra information could lead to more accurate 
diagnoses (e.g., Wright, 1974; Dawes & Corrigan, 1974; Dawes, 1979; Schroeder & 
Benbassat, 1975). Not all research findings have revealed these cognitive shortcuts 
however. Brehmer and Slovic (1980) examined whether high demand integration tasks 
would lead to such simplifications in cue-judgment relationships. That is, whether 
subjective ratings of different cues is distorted in integration tasks. Results from this 
three-part study did not reveal any evidence for cognitive simplifications. It is possible 
that the task was sufficiently easy (they used only 2 or 3 cues in their diagnosis, and 
therefore did not impose a sufficiently high workload) that it did not require any mental 
shortcuts. Similarly, they did not introduce any time pressure or other potential resource 
draining tasks (e.g., using distractor items or a secondary task). Under these conditions, 
we might expect to see degraded performance on information integration tasks and 
subsequent judgments (Wright, 1974; Svenson & Maule, 1993). 
 
 It is generally understood that people will weigh cues differentially and may 
employ heuristics or mental shortcuts when making a diagnosis or decision. What is less 
clear is how different cue types impact these two processes. One important issue is the 
extent to which more abstract (probabilistic) information can be processed compared to 
more concrete information (e.g., size). Tversky and Kahneman (1981) note that people 
are often biased in their estimation of probabilistic information. As such, the reliability 
of the information can be a significant variable in people’s ability to integrate cues 
appropriately. According to models of cue integration, differentially weighted 
information degrades performance on information integration tasks (consistent with the 
‘as if’ heuristic), including varying degrees of reliability (Sorkin et al., 1991) though not 
all studies have showed evidence of this degradation (e.g., Jones et al., 1990).  
 
 There have been a number of investigations into the effects of unreliable (or 
uncertain) information on integration. It has been shown that, in some cases, people will 
suppress the uncertainty of the information as a mechanism to cope with it (Lipshitz & 
Strauss, 1996, 1997). In an examination of information seeking behavior of U.S. Army 
enlisted men, Levine and Samet (1973) found that less information is sought when the 
information is more unreliable in nature. As a result, decision accuracy is greater under 
conditions of highly reliable information. St. John et al. (2000) had Marines make tactical 
decisions on information with three levels of reliability. Decision-making in this military 
context required participants to synthesize information from many different sources 
(e.g., maps, briefings). The uncertainty of this information was dependent on the source 
of the information, the reliability of the source, and the age of the information. The 
results revealed that less experienced Marines elected to “wait and see” (i.e., wait for 
further information regarding enemy units) under conditions of high uncertainty more 
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often than more experienced soldiers (cf. Levine & Samet, 1973). When information was 
of medium or low uncertainty, the frequency of “wait and see” decisions was 
comparable across both experience levels. Using a similar display of information 
certainty, Kobus et al. (2000) measured decision response times in dynamic tactical 
scenarios under conditions of low and high uncertainty. Results showed that selection of 
a course of action (time to acquire SA and make decision) was significantly slower when 
displayed information was of high uncertainty.  
 
 In summary, previous research has shown that limitations in attentional resources 
and working memory and conditions of high mental workload and unreliable 
information may lead to degraded performance on information integration and 
decision-making tasks and, as a consequence, decreased situation awareness. These 
elements are all a significant part of complex environments, where degraded 
performance may have serious, life-threatening consequences. By supporting the 
acquisition and integration of information cues (particularly indices of reliability) or 
through diagnostic support, technological solutions and various forms of automation 
may yield positive benefits in this domain and help reduce the cognitive demands of 
operators and consequently, enhance performance. We now discuss the manner in 
which automation devices have been designed to provide such assistance, describing 
their strengths as well as their potential weaknesses. 
 
 
Automated Systems and their Impact on Performance 
 
Automation involves the execution by a computer (or machine) of a task that was 
formerly executed by human operators (Parasuraman & Riley, 1997). As such, the 
definition of automation encompasses a wide range of systems, and stretches also across 
many domains. For example, future army endeavors will likely incorporate automated 
systems such as the Army Battle Command System (ABCS) and the Maneuver Control 
System (MCS) touted at maximizing commander situation awareness through good 
visualization and integration of information (Burba, 1999).  
 
Automation Taxonomy. Parasuraman et al. (2000) propose a 4-stage taxonomy of human-
automation interaction. In this model, automation can be applied (in varying degrees or 
levels) at any of the stages: (a) information acquisition (attention guidance), (b) 
information analysis and integration (diagnosis), (c) selection of decision and action 
(choice), and (d) action implementation. These four stages are based on a simple model 
of human information processing (sensory processing; perception/working memory; 
decision making; response selection).  
 
 The level of automation applied to each stage of the model will dictate how much 
control the human is afforded in the operation of the system. Automation in the 
information acquisition stage (stage 1) acts to support human sensory and attentional 
processes (e.g., detection of input data). A higher level of automation at this stage may 
present (on a display) only information it deems appropriate while filtering out all the 
rest. A lower level of automation, on the other hand, may present all of the raw data but 
guide attention to what the automation infers to be the most relevant features (target 
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cueing; information highlighting). At the next stage, information analysis, automation 
serves to aid the human operator by reducing the cognitive demands through use of 
computer algorithms that may be used to integrate relevant information, draw 
inferences, and predict future trends. In this stage, lower levels of automation may 
extrapolate current information and predict future status (e.g., cockpit predictor 
displays). Higher levels of automation at this stage may reduce information from a 
number of sources into a single hypothesis regarding the state of the world. At stage 3 
automation (selection of decision and action), lower levels may provide users with a 
complete set (or subset) of alternatives while higher levels may only present the 
“optimal” decision or action. Finally, stage 4 automation (action implementation) will 
aid the user in the execution of the selected action.  
 
 The model proposed by Parasuraman et al. (2000) maps onto Endsley’s model of 
SA, with early stages of automation contributing to the establishment and maintenance 
of SA (as shown in Figure 2). It follows that automation in the first stage (information 
acquisition) that supports the underlying psychological processes of sensation, 
perception, and attention will also support SA at this early level. Similarly, the extent to 
which the second stage automation (information analysis) can support cognitive 
functioning and working memory will directly impact the higher levels of SA. 
 
 For all the benefits of automation, there are also limitations and concerns of 
operator over-reliance upon imperfect automation (Parasuraman  & Riley, 1997; Mosier 
et al., 1998; Moray, 2000; Dzindolet et al. 1999). Endlsey (1996) notes that automation 
may impact situation awareness through changes in vigilance and monitoring tasks 
(complacency); changes in operator role from active to passive (‘generation effect’; 
Slameca & Graf, 1978); and changes in the nature of feedback given to the operator. 
Consistent with these changes in operator roles, Metzger and Parasuraman (in press) 
demonstrated the detrimental effects of passive versus active monitoring in a simulated 
air traffic control task. 
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Figure 2. Models of Human Interaction with Automation and Situation Awareness 
(Parasuraman et al., 2000; Endsley, 1995). 
 
 
 
  Research has shown that inaccurate decision aids at stages 2 and 3 of automation 
will affect performance differentially, typically with automation failures at later stages 
having more serious performance repercussions (e.g., Crocoll & Coury, 1990; Sarter & 
Schroeder, 2001). Mosier (1997) highlights some key issues in the use of automated 
decision aids, including the capacity of the user to ignore automation cues in favor of the 
raw data when appropriate to do so, and the ability to detect failures and errors in 
automated systems. These issues are of critical concern, especially when the failure of a 
system has high costs. 
 
 Given the potential negative effects of higher-stage automation failure and the 
importance of strong performance, decision-making, and SA, lower stage (i.e., stage 1) 
automation may lend itself best to complex environments. A problem with many current 
systems results from too much source information, creating difficulties finding relevant 
information at the appropriate times (Endsley, 2000). Through attention guidance, target 
cueing, and information filtering, early stage automation may help decrease cognitive 
load but still afford the human observer sufficient autonomy to establish and retain 
good SA. For example, Evans (1999) emphasizes the importance of automated filtering 
aids in future battlefield operations. These aids would reduce the amount of information 
that commanders must consider. Only relevant cues and reports would pass through the 
filters allowing commanders the capacity to make more effective decisions, especially 
when under time duress. Recall, this filtering is considered to be higher-level stage 1 
automation since the system is selectively hiding some pieces of information. Lower 
level automation at this stage differs in that the raw data for less relevant sources is 
available to the user, should they need to consult it. 
 
Benefits of Attention Guidance Automation. There has been extensive research into the 
effects of stage 1 automation (attention guidance) in target detection tasks. Basic research 
has reliably demonstrated the capacity for visual cues to reduce search times in target 
search tasks (see, e.g., Egeth & Yantis, 1997; Flanagan et al., 1998). Applied research has 
also demonstrated these benefits in military situations (Yeh et al., 1999, Yeh & Wickens, 
2001), helicopter hazard detection (Davison & Wickens, 2001), and a number of other 
domains (Mosier et al., 1998). 
 
 Metzger and Parasuraman (2001) examined the benefits of a stage 1 automated aid 
on conflict detection for air traffic controllers (ATC). The automated aid highlighted a 
potential loss of separation (conflict) 6 minutes in advance. The aid increased the 
number of detected conflicts and reduced the search times compared to a non-
automated control condition and reduced the controller workload. NASA TLX ratings of 
workload suggested a slight trend, with higher workload for the manual (non-
automated) condition. 
 



 

 

9 

 In their examination of the effects of perceptual support activities on dynamic 
decision-making performance, Kirlik et al. (1996) showed that response selection and 
execution in a simulated football game was faster when participants were provided with 
visual enhancements of discrete, critical cues. In a subsequent experiment, perceptual 
support was increased through the enhancement of additional information (including 
critical properties and relationships). Participants in a battlefield task used an 
augmented display to assess a number of cues relevant to their combat decisions. The 
augmented display was used to support the perceptual assessment of these various 
cues. Performance using this augmented display was superior to the non-augmented 
display under conditions when workload was increased (by increasing the number of 
elements in the display).  
 
Stage 1 Automation Costs. Despite these observed benefits from these reported studies, 
there have been findings which demonstrate potentially negative impacts of reliable 
automation on the overall processing of information in a display, in particular, the 
processing of information which is not explicitly highlighted through the automation. In 
a series of studies that examined the influence of attentional cueing on battlefield target 
detection, Yeh and her colleagues (Yeh et al., 1999; Merlo et al., 1999; Yeh & Wickens, 
2001) found that such cueing narrowed the focus of attention around the cued target 
such that it reduced the accuracy of detecting more important (uncued) targets that were 
present in the same scene. Similarly, Davison and Wickens (2001) found that automated 
cueing of targets (hazards) for helicopter pilots degraded performance in detecting a 
second, uncued target visible at the same time. 
 
 These findings of attentional narrowing have important repercussions for the use of 
automation, particularly when considering the level of automation being incorporated at 
early stages. Higher levels of automation in stage 1 will likely filter out the uncued 
targets (i.e., those that the systems deems unimportant or non-task related) and so, 
under conditions of perfectly reliable automation, detection performance for these 
filtered targets will not be relevant. However, in cases where a lower level of automation 
is adopted (i.e., certain targets are highlighted but not others, as in the studies described 
above), the extent to which the cued information interferes with the perceptual 
processing of uncued information may have significant consequences, especially when 
uncued information has some bearing on the performed task. 
 
 In addition to the impact of reliable automation on performance, there are also 
obvious concerns over the impact of unreliable (or less than perfect) automation. Several 
studies discussed above, in the context of attentional narrowing, have also addressed the 
issue of unreliability in early stage automation. Yeh and Wickens (2001) examined the 
effects of reliable and unreliable target cueing on attention and trust. In this target 
detection task, targets were cued at either 100% or 75% reliability levels. The target cue 
consisted of a lock-on reticle that was superimposed over the target item (or when 
unreliable, the reticle was superimposed over similar looking distractor items). The 
results demonstrated that cueing information results in a decrease in sensitivity to the 
features of the raw data (in signal detection sense) suggesting that users were exhibiting 
an over-reliance on the automation guidance cue, a shift in response criterion, rather 
than using the cue to increase processing of the raw data underlying the cue. As a 
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consequence, when the cue (unreliably) highlighted a non-target, participants were 
likely to misclassify it as a target. 
 
 In their study of ATC conflict detection aiding, Metzger and Parasuraman (2001) 
included simulated failure trials in which an aircraft would deviate from its flight plan, 
thereby creating a conflict. In these conditions, the flight path change was short-term 
and thus was not reflected in the automated display which cues the controller to likely 
conflicts. In the automated condition, there were slower response times and a higher 
miss rate for the failure trials compared to the manual condition. This is consistent with 
previous findings and the notion of automation induced complacency. 
 
 In their examination of helicopter hazard cueing, Davison and Wickens (2001) 
found that the first occurrence of unreliable cueing resulted in delayed maneuver 
responses. For subsequent (post-failure) trials, hazard maneuvers were executed earlier 
than in 100% reliable and baseline conditions, suggesting that pilots’ trust in the 
automated system was reduced after the occurrence of a failure. The impact of failures 
on user’s calibration will likely dictate how frequently the user will employ the system. 
Miscalibration or undertrust in a system may decrease its overall use, even in situations 
where it is perfectly reliable. 
 
Stage 2 Automation Costs. Mosier et al. (1998) investigated automation over-reliance in the 
cockpit of automated aircraft. Over-reliance reflects a miscalibration of user’s perceived 
reliability of the systems and may be characterized by errors resulting from the use of 
automated cues in lieu of vigilant information seeking and processing of all of the raw 
data. In this study, pilots flew different flight legs using typical flight deck automated 
systems. Over the course of these legs, five automation failures were introduced 
(generated in different automated systems, e.g., flight control system; communications 
system). Responses to the failure events showed strong evidence of automation over-
reliance with pilots failing to utilize all of the available information in making their 
judgment, attending instead to the highly salient automated cues. Contrary to 
expectations, pilot experience did not reduce the occurrence of automation over-reliance, 
rather those pilots with more experience were actually more susceptible to such errors. 
Automation over-reliance may be a function of systems that are typically highly reliable 
(e.g., flight deck automated systems). Such biases can have important implications at all 
stages of Parasuraman et al.’s (2000) taxonomy, especially in high-risk environments 
such as the cockpit or the battlefield. 
 
 Davis and Pritchett (1999) employed a computer-based automated diagnostic tool 
to aid professional helicopter pilots in diagnosing mid-flight system failures. 
Throughout 13 flight failures, it provided accurate information, which pilots found 
beneficial. On the final (14th) failure, the system provided an incorrect diagnosis (and 
corresponding action recommendation), contraindicated by the raw data. Only 5 of 12 
pilots ignored the automation failure and responded appropriately, and 5 others 
followed the automated guidance, leading to an inappropriate shut down of the 
remaining good engine.  
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 Wickens et al. (2000) found further evidence for over-reliance on automation 
inference systems. In this study, pilots flew different flight legs while interacting with a 
predictive display of traffic (cockpit display of traffic information, CDTI). Pilots tended 
to over-rely on the automation, allocating more attention to the predictor display than 
the raw data, especially with increased task complexity.  
 
 In general, research on target cueing has demonstrated faster detection times for 
cued (or highlighted) targets however degraded performance in detecting uncued 
targets. This degraded performance has significant repercussions for unreliable (or 
imperfect) automation. Research has shown that observers have slower responses to 
uncued events when automation is unreliable (in the case of a failure). There is also 
some indication that the use of target cueing will decrease an observer’s sensitivity to or 
depth of processing of a target (i.e., attending more to the cue than to the raw data 
underlying the cue). Much of the reviewed research involves target detection and 
perception tasks (i.e., Endsley’s level 1 SA). However little or no research has been done 
to examine how the implementation of an automated attention guidance system will 
impact performance on the multi-cue integration task (i.e., Endsley’s level 2 SA), 
characteristic of the commander’s formation of battlefield SA.  
 
Automation and Depth of Processing. Target cueing is assumed to modulate the allocation 
of attention to events or stimuli in the environment. On the one hand, less attention is 
allocated to uncued targets (attentional narrowing). On the other hand, possibly, less 
attention is allocated to the raw data underlying the cue (with greater reliance upon the 
cue itself; Yeh & Wickens, 2001). While this attention modulation can be directly 
reflected in detection performance, as in the target detection studies described above, its 
measurement is more challenging in the information integration task examined here, 
since each event or object does not describe a single “task” whose performance can be 
assessed. To address this issue, we assume that the depth of processing of each object, 
modulated by attention, is correspondingly reflected in the memory for the attributes of 
an object (Craik & Lockhart, 1972). In our paradigm, memory probes may be used to 
differentiate between the two possible strategies of cue use contrasted by Yeh and 
Wickens (2001); decreased response bias (increased cue reliance) and increased 
sensitivity (increased processing of raw data). If observers are adopting a response bias 
strategy, they would likely exhibit poorer recall for different attributes of the raw data 
underlying the cue. On the other hand, those who adopt a sensitivity strategy would 
demonstrate better recall on the same memory task. In our experiment, the conceptual 
framework proposed by Craik and Lockhart (1972) offers a useful approach for 
examining depth of processing in an information integration task where multiple pieces 
of information must be attended to, and are sometimes cued. 
 
 
Summary and Present Research 
 
As is the case in many other domains, battlefield commanders’ situation awareness often 
involves the integration of large amounts of information from a number of sources in 
order to form an accurate situation assessment (Graham & Matthews, 1999). This 
weighted information includes the location and strength of other friendly and opposing 



 

 

12 

forces, the surrounding terrain, and a large number of other METT-T operational factors. 
Previous work has shown that people do not always integrate multiple pieces of 
information optimally (when making a judgment or decision), especially under 
conditions of high workload, time pressure, or when the information is unreliable in 
nature, conditions which are characteristic of the battlefield environment. Automation 
can be provided to assist the battlefield commander in this task at various stages of 
information processing, for example in guiding attention to the most valuable cues 
(stage 1), in diagnosing what automation infers to be the most likely state of intent (stage 
2), or in recommending the most appropriate course of action (stage 3) (Parasuraman et 
al., 2000). However limitations of automatic diagnosis and choice have been found in 
operator over-reliance upon imperfect automation (Parasuraman & Riley, 1997; Mosier 
et al., 1998). Thus, in this experiment we focus our primary interest on automation at the 
first stage, to assist the operator by highlighting the most relevant cues for situation 
assessment. Unlike automated situation assessment and choice, this technique does not 
need to hide the raw data, but only de-emphasizes that which is less relevant. Research 
on target cueing (a form of attention guidance) has reliably demonstrated the benefits of 
automation. Nevertheless such highlighting or attention cueing has also been found to 
produce unwanted effects on attentional tunneling (e.g., Yeh et al., 1999; Metzger & 
Parsuraman, 2001; Davison & Wickens, 2001), and over-reliance. 
 
 While past research on automation attention guidance has focused on target 
detection tasks (e.g., Yeh et al., 1999; Davison & Wickens, 2001), the current research 
examines stage 1 attention cueing in an information integration task (i.e., Endlsey’s stage 
2 SA) where all the raw data are available and the cues highlight the most relevant 
information (i.e., most highly weighted in integration). Specifically, we assessed the 
effects of an automated cueing aid in a static battlefield map display on (a) the assessed 
threat of enemy attack from the east and west, (b) the depth of processing of raw data 
(for high and low relevant information, cued and uncued), and (c) over-reliance on 
imperfect automation (the participant’s reaction to the automation’s failure to cue a 
highly relevant piece of information).  
 
 In two experiments, participants under time pressure observed map displays which 
contained large amounts of information (regarding the type, location, strength, and 
accessibility of other military units, as well as the reliability of the information source). 
In experiment 1 (stage 1 automation), the cueing aid highlighted the enemy units that 
were most relevant to the participant’s threat assessment and was intended to help the 
observers filter out the less relevant information (e.g., neutral or other friendly units). 
We hypothesized that the filtering effects of the automated aid would allow participants 
to make more optimal defensive allocations compared to baseline conditions. Memory 
probes were used on some trials to assess differential effects of automated cueing on the 
depth of information processing (Craik & Lockhart, 1972) for a particular unit (i.e., 
whether cueing decreased target sensitivity) (Yeh & Wickens, 2001). It was also 
predicted that the failure of automation to highlight a relevant cue would result in the 
failure to process that cue and hence an inappropriate allocation of resources. Finally, 
we were interested in whether certain information cue types would be intrinsically 
given more weight in the threat assessment, independent of the level of automation and 
their information value (i.e., concrete versus abstract probabilistic cues). 
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 Experiment 2 allowed the differences between stage 1 and stage 2 automation to be 
examined. In this experiment, an automated diagnostic decision aid (stage 2) replaced 
the cueing aid that was incorporated into the first part of this research. This decision aid 
made suggestions regarding the appropriate deployment of defensive resources rather 
than highlighting relevant information. It was predicted that, to the extent that this 
higher stage automation was reliable, performance would be superior to the stage 1 
automation in the first study. It was also anticipated, however, that the costs associated 
with the failure of this automation would be greater (as demonstrated by the failure 
trial) to the extent that participants become over-reliant on the automated aid. Such a 
finding was postulated by Parasuraman et al. (2000) and would be predicted on the basis 
of findings by Crocoll and Coury (1990) and Sarter and Schroeder (2001). These studies 
demonstrated that automation failures at later stages caused greater decrements to 
performance than those at earlier stages.   
 
 

EXPERIMENT 1 
 

METHODS 
 
Participants 
 
Ten upper level ROTC students (ages 20-23, M = 21; ROTC experience, M = 3 yrs) and 
six non-ROTC (graduate) students (ages 23-38, M = 28) at the University of Illinois 
volunteered for this study. Eleven men and 5 women made up these groups. All 
participants had normal or corrected-to-normal vision and were familiar with 
topographical (contour) maps. All participants were paid $7 US per hour for completing 
the study. 
 
 
Materials 
 
Hardware. Battlefield scenarios were presented to participants on a 21-inch Silicon 
Graphics color monitor through a 180 MHz Silicon Graphics O2 workstation with 128 
MB of RAM. The monitor was set to 1280 x 1024 pixels of resolution. Battlefield 
scenarios were created using in-house graphics and development software. 
 
Battlefield Scenarios. Sixty-four battlefield scenarios were developed using topographical 
maps of Fort Irwin and standard military symbology (USMC, 1997). Four sections of the 
Fort Irwin region were selected for their varied terrain features. Standard symbols for 
enemy, neutral, and friendly units were embedded within these map sections (see 
Appendix A). These units varied in size (e.g., platoon), type (e.g., enemy combat 
mechanized), location, and the reliability of the intelligence estimate of their identity. 
Three levels of reliability were used which represented varying degrees of certainty: 
highly reliable information (confirmed; marked by solid lines), medium reliability 
(marked by dashed lines), and low reliability (unconfirmed; marked by dotted lines) (see 
Appendix B). For non-ROTC students, a numerical digit replaced the standard 
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symbology for unit strength. The participant’s own unit was always located near the 
center of the map. Summary information for each scenario is presented in Appendix C. 
 
 On each trial, participants had 20 defensive resources which they could deploy to 
either the east or west of their position. Participants were required to evaluate the 
overall threat of units in the east versus those in the west and allocate defense resources 
accordingly. Optimally, a large threat from the east, for example, would receive a larger 
proportion of these resources than would a lower perceived threat from the west. The 
overall threat was the sum threat of each individual unit occupying a particular region 
(all units were operating independently). The relative threat of each unit to the 
participant’s current location was based on weighted evidence from multiple cues. 
Participants needed to integrate information on unit type and size, the separation 
distance (relative to their own position), the difficulty of the terrain between the unit and 
themselves (straight line approaches were specified), and the reliability of the cue.  
 
Automation. On some of the trials, an automation feature was incorporated into the 
battlefield display. This automation guided attention to the most relevant (highest 
threat) symbols on the map by augmenting them. Symbols subject to this enhancement 
pulsed from high to low intensity at a rate of approximately 1 Hz. The relevance of a 
symbol was based on its information value (units having higher information value were 
deemed to be more of a threat; Barnett & Wickens, 1988) and this information value was 
based on several variables (size, type, distance, and difficulty of terrain, and reliability). 
The following formula, depicting the information value of a particular unit, was derived 
through a multiple regression of questionnaire data from six independent observers (see 
Appendix D): 
 
(1) IVunit = Xtype(90 + 4 Xsize – 5 Xdist –14 Xdiff) x R, 
  
where, Xsize, Xdist, and Xdiff define the unit size, distance, and difficulty of the terrain, 
respectively. R is the overall reliability of the information (from 0 to 1), and Xtype is the 
type (1 for enemy units, 0 for neutral or friendly). Four independent observers rated the 
difficulty of terrain on a 4-point Likert scale (4 being the most difficult terrain). It follows 
from this formula that only enemy units will be perceived as a threat, and threat 
increases as unit size increases, separation distance decreases, and terrain difficulty 
eases. Reliability is used as a moderator variable (see Appendix E, for sample IV 
calculations). The automation feature enhanced symbols that had information values 
equal to or greater than 30, yielding on the average trial, automation highlighting of 
approximately 22% of the units. 
 
Memory Probe. A memory probe was administered following two (roughly 4%) of the 
scenarios. The purpose of this probe was to determine to extent to which participants 
were attending to the raw data (the unit symbols). The probe was administered 
unpredictably and in lieu of the participant’s allocation response and queried details on 
the size of the unit at a particular location in the battlefield display (see Appendix F). 
Participants gave their confidence rating on a five-point Likert scale. One probe followed 
a non-automated trial (no enhancement), while another followed an automated trial 
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(queried either an enhanced symbol or a non-enhanced symbol). Responses were scored 
on the basis of accuracy and degree of confidence.  
 
Failure. One scenario was presented in which the automation feature failed to enhance 
all of the highly relevant units. On this trial, the enhancement appeared normal for all of 
the units in one direction however did not highlight a very important unit on the 
opposite side (one which would have a substantial impact on the allocation of 
resources). The purpose of this trial was to determine whether participants were 
attending to all of the raw data on automated trials or rather to the enhanced units only. 
This element was never the target of a memory probe. 
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Procedure 
 
Participants completed an informed consent form (Appendix G) and a brief 
demographic questionnaire (Appendix H) at the beginning of the 45-minute session. 
Participants were seated at a SGI workstation and given brief verbal instructions (see 
Appendix I for verbal protocol). This instruction set familiarized the participants with 
the maps and contour lines, military symbology, rules of engagement, automation 
features, and task demands.  
 
 Participants were instructed to assume the role of a battlefield commander 
positioned in a central unit. As the commander, they were asked to make critical 
decisions for the defense of their position based on information obtained from a map 
display. Participants were instructed to observe each battlefield scenario carefully and 
rate the relative threat from forces in the east versus those in the west (based on size, 
type, distance, difficulty of terrain, and reliability). Using this judgment, they were 
required to allocate 20 defensive resources to the appropriate east-west positions (e.g., 13 
east and 7 west). Participants were told that the purpose of the automation was to guide 
their attention to the most relevant units on the battlefield and that non-highlighted 
units were not necessarily irrelevant but rather deemed to be less of a threat than the 
highlighted units.  
 
 Each trial began with a brief instruction screen after which the battlefield scenario 
appeared (on keystroke). The trial ended when the participant pressed another key or 
after 25 seconds had elapsed. This time value was chosen (after pilot testing) to impose 
considerable time-stress to perform the task accurately, and thereby to assure that the 
assistance from the automated highlighting was both required and used. The map 
display then disappeared and the response screen appeared. Participants first completed 
a brief practice block (5 scenarios) followed by the experimental block, which consisted 
of 51 scenarios. On roughly half of the trials, the automation feature was active. 
Automation scenarios were randomly selected and counterbalanced across participants 
(in a set of four different presentation orders). A memory probe question was 
administered on two of the trials.  On the final trial of the block, participants were 
presented with the failure trial. The self-paced block was approximately 30 minutes 
long. 
 
 Following the experimental block, participants completed a post-experimental 
questionnaire (Appendix J) and were remunerated for their participated. 
 
 Experimental Design 
 
This experiment utilized a mixed design, with the between variable of Student (ROTC, 
non-ROTC) and the within variable of Display Type (automation, no automation). All 
participants were exposed to both display types, however they did not experience all 64 
scenarios. Each participant was shown one of four subsets of 51 scenarios (see Appendix 
K). These subsets were used to reduce the session duration. Memory probe trials were 
counterbalanced to control for order effects. 
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RESULTS 

 
Equation (1) was used to compute the optimal allocation of defensive resources based on 
the sum of the information values for the various units displayed on the map 
(comparing east versus west). Participant allocation responses were compared to the 
predicted values and expressed as absolute difference (error) scores in the analyses. As 
such, smaller difference scores were an indication of more optimal performance. 
 
 A total of 5 observations were removed as outliers from the subsequent analyses 
(i.e., they exceeded 3 standard deviations from the mean). Data from the remaining 749 
trials were used in the overall analyses. 
 
Allocation Performance. A two-way ANOVA for Student (ROTC; non-ROTC) and Display 
Type (automation, no-automation) revealed significant main effects for both variables 
(Student, F(1, 366) = 4.8, p = .03; Display, F(1, 366) = 6.1, p = .01). Overall, allocation 
policies were closer to the optimal level for trials with automation (M = 2.7) versus those 
with no automation (M = 3.1) (see Figure 3). This finding is consistent with the 
hypothesis that automation would benefit performance on the information integration 
task. 
 
 Non-ROTC (graduate) students were found to have lower error scores (M = 2.6) 
than ROTC students (M = 3.0) (see Figure 3). The Student x Display interaction was not 
significant (F(1, 366) = .11, p = .74), suggesting that both groups benefited equally from 
automation. 

Figure 3. Absolute error by display type and student type
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 A two-way ANOVA of response times revealed significant main effects for Student 
(F(1, 374) = 26.8, p < .001) and Display Type (F(1, 374) = 16.2, p < .001) (see Figure 5). The 
Student x Display Type interaction was marginally significant (F(1, 374) = 2.7, p = .10). 
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As Figure 4 demonstrates, responses were made more rapidly (M = 18.6 s) on automated 
trials than on non-automated trials (M = 20.2 s). ROTC students were also found to 
respond faster (M = 18.5) than non-ROTC students (M = 21.0), thus in conjunction with 
the accuracy data, suggests that the two groups differed slightly in their speed-accuracy 
tradeoff. 

 

Figure 4. Response time by display type and student type
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Memory Probe. A two-way ANOVA was used to determine the depth of processing for 
high and low relevance units (Relevance) in automation and no-automation conditions 
(Display Type). Because ROTC and non-ROTC students showed equal benefits of 
automation and because of the relatively small number of memory probes, this analysis 
was collapsed across the two groups. Overall, results did not show a main effect for 
Display type on the confidence-based measure of unit memory (F(1, 27) = .27, p = .61) 
nor a Display x Relevance interaction (F(1, 27) = .27, p = .61). The main effect for 
Relevance approached significance (F(1, 27) = 3.5, p = .07) suggesting that participants 
adopted the appropriate strategy of processing highly important cues more deeply (M = 
5.9) than less important ones (M = 4.2).  
 
 In conditions with no automation, recall performance for the high relevance unit (M 
= 6.5) was higher than for the lower relevance unit (M = 4.2) (see Table 1). This 
difference was marginally significant, (F(1, 14) = 3.4, p = .09), and suggests that 
observers, under normal (non-automated) conditions, are appropriately attending to 
objects that are more important to their threat assessment task. For automated 
conditions, this trend favoring recall for the high relevance unit, which was highlighted 
(M = 5.5), over the low relevance unit, which was not (M = 4.2), was still present 
however much weaker (non-significant; F(1, 13) = .75, p = .40). The introduction of 
automation appears to have some adverse effect on the depth of processing for high 
relevant, enhanced units. This finding offers support for the notion of degraded 
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sensitivity or less processing of the raw data within highlighted or cued targets (Yeh & 
Wickens, 2001). 
 

Object Type 
Display Type 

Low Relevance High Relevance 

Automation 4.2 (1.4) 5.5 (.78) 

No Automation 4.2 (.6) 6.5 (1.3) 
Table 1. Recall scores for memory probe questions (Std. Error in parentheses). 

 
 Memory performance for the low relevance objects was equal, regardless of 
automation condition. Analyses of the raw scores indicated that performance for these 
units was above chance performance. Because the unit was not highlighted in both of 
these conditions, this suggests that the depth of processing for these cues was not 
hindered by the presence of automation for other items. This finding is not consistent 
with the findings from other research that the presence of cued targets detracts attention 
from non-cued objects (e.g., Yeh et al., 1999; Yeh & Wickens, 2001).  
 
 As noted above, recall for the high relevance item was slightly weaker with 
automation (M = 5.5) compared to the no automation (M = 6.5) condition. Performance 
for this high-relevant (automation highlighted) memory probe was characterized by a 
bimodal distribution, with participants typically scoring either very high or very low in 
the automated condition (see Figure 5). The resulting high variance in this response 
pattern barred any significant findings, but is of considerable interest in its own right 
suggesting that some participants may have ignored the raw data behind the 
highlighted cue entirely, integrating only the fact of its highlighting, whereas others 
used the highlighting as a guide for deeper analysis of the threat that had been 
highlighted. These two strategies correspond to the effects of cueing that Yeh and 
Wickens (2001) had associated with reliance, or response bias (beta) and enhanced 
processing, or sensitivity (d’), respectively. 
 
Failure trial. On the failure trial, the automation did not cue a highly relevant target. In 
this scenario, the perception of this unit was designed to have a significant impact on the 
allocation of defensive resources. Thus, whether a participant noticed the unit or not was 
inferred from their allocation score for this trial, using an experimenter-defined criterion 
to make this inference. This criterion was based on the optimal allocation of resources 
when the uncued target was taken into consideration. Scores that did not fall within 2 
points of this criterion level were considered to be an indication that the unit had not 
been noticed and / or was not utilized in the allocation of resources. Results suggested 
that roughly half of the participants (7 of 15) failed to notice the high-relevant unit that 
the automation did not highlight. This relatively high figure may be an indicator of 
automation-induced complacency. In the post-experimental questionnaire, some 
“noticers” noted that the automation missed some important enemy units, while some 
“non-noticers” commented on the automation’s capacity to make them ignore the non-
highlighted information.  
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Figure 5. Memore probe response frequency for automated, high-
relevant cue
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 Given the frequency of missed events on the failure trial, we examined whether 
there was any significant relationship between performance on the failure trial and the 
pattern of responses on the memory probe for the high-relevance, cued target, as shown 
in Figure 5. The presence of such a relationship would perhaps offer an explanation for 
the observed bimodal probe response pattern. A point biserial correlation between 
observer type (failure noticer, non-noticer) and performance on the memory probe 
revealed a significant relationship (rpb = .69, p < .05) between the two variables. It was 
estimated that 63% of the variance in memory probe performance was accounted for by 
observer type. There was however no indication that demographic variables (e.g., 
gender, ROTC vs. non ROTC students) might distinguish between the two observer 
types. 
 
 Further examination of observer type revealed some interesting trends with respect 
to the unit relevance of the memory probe (high, low), though statistical tests were 
precluded due to low cell counts. As shown in Table 2, noticers and non-noticers tend to 
perform equally on recall for low relevance units on non-automated trials. However 
when automation is present, noticers scored much higher than non-noticers on the low-
relevant (and therefore uncued) objects, suggesting that the two groups engaged in 
different strategies for interacting with the automation. This is consistent with the results 
from the failure trial, where noticers were more likely to attend and react to a non-
highlighted unit. 
 
 For the high relevance memory probe, noticers again outperformed non-noticers on 
recall for unit attributes (see Table 2). The relatively high score for non-noticers on the 
non-automated, high relevant probe may be an indicator that these observers perform 
well in general but this performance degrades when automated cueing is introduced. 
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Observer Type 
Memory Probe Display Type 

Noticer Non-noticer 

Automation 7.5  (1.5) 2.0  (.6) 
Low Relevance 

No Automation 4.2  (1.0) 4.3  (.6) 

Automation 6.7  (1.0) 3.8  (.5) 
High Relevance 

No Automation 4.0  (-) 9.3  (.3) 
Table 2. Recall scores for low and high relevance memory probe (Std. error in parentheses). 
 
 
Cue Weighting. Several analyses were carried out to investigate the differential treatment 
of cue types in allocation responses. Specifically, we were interested in determining how 
observer’s judgments were influenced by differences in unit strength, distance, terrain, 
and reliability information. In order to accomplish this, several scenarios were matched 
to allow for comparisons across these dimensions. Pairs of trials were compared in 
which differences along one of the dimensions (e.g., reliability) required a different 
allocation policy (for these trials, all other cue dimensions were held constant). If 
participants did not attend to changes in the particular cue, then we would expect their 
response patterns to be similar on the two trials (i.e., no difference). As such, the 
difference in the allocation scores between the two trials was used in the following 
analyses. The expected difference for optimal allocation for the selected trials was 
between 3.4 and 4 for each of the four different cue types. 
 
 Preliminary analyses were run to determine whether observers attended to changes 
along one of the dimensions. These initial analyses compared the difference scores (for 
the two trials) against zero (i.e., the expected response if they did not attend to the 
change). Tests for each of these variable were found to be significant: unit size (t(45) = 
9.6, p < .001); reliability (t(24) = 4.9, p < .001); terrain (t(69) = 9.9, p < .001); and distance 
(t(93) = 10.7, p < .001). These tests demonstrate that participants were indeed attending, 
at least to some extent, to each of the four cue categories (as reflected by their response 
patterns).  
 
 A one-way ANOVA for Cue Type on non-automated trials revealed significant 
differences across Cue Type (F(2, 80) = 4.3, p = .02). (The distance cue was not included 
in this analysis because of the potential confound with terrain difficulty. These two properties are 
inexorably linked and therefore highly correlated within the map display, and though steps were 
taken to minimize these influences, it was nearly impossible to control for all terrain types while 
manipulating distance values). Post hoc tests showed a greater influence of size (M = 5.3) than 
terrain (M = 2.8; p = .01) and reliability (M = 3.7; p = .16) though the latter difference was only 
marginally significant (see Figure 6). The difference between reliability and terrain was not 
significant (p = .29). 
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Figure 6. Difference scores by cue type for non-automated trials
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 The rank order of cue influence (size > reliability > terrain) that was inferred from 
the objective performance data on non-automated trials is not entirely consistent with 
subjective self-reported importance, as measured in the post-experimental 
questionnaire. Participants indicated that size was the most important factor (M = 4.4), 
followed by distance (M = 4.0), terrain (M = 3.9), and reliability (M = 3.2) (see Figure 7). 
Non-parametric rank tests indicated that this subjective ordering was significant (X2F = 
13.7, p = .008) and somewhat consistent across raters (Kendall’s coefficient of 
concordance = .19). 

Figure 7. Self-Reported Importance by Cue Type

0

1

2

3

4

5

Size Reliability Terrain Distance
Cue Type

Im
po

rta
nc

e 
Sc

or
e

 
 



 

 

23 

Questionnaire responses. In general, participants found the automated cueing aid to be 
moderately useful (M = 3.3 on a 5-point Likert scale) and had many positive comments 
regarding the potential for such systems (see Appendix L, for participant responses). 
Many participants lauded the ability of the system to help them quickly detect the most 
threatening units in the map display, as well as their ability to filter out the less relevant 
stimuli. They also acknowledged a number of different situations where the system 
would be most useful, including conditions of time pressure, and high workload (from 
number of sources of information). 
 
 Interestingly, participants were also aware of many potential shortcomings of the 
system, including: the presentation of unreliable information or automation failure; the 
capacity of the system to detract attention from uncued hazards (attentional tunneling); 
and discrepancies between the computer’s assessment of threat and their own. 

 
 

DISCUSSION 
 

The goal of the present experiment was to examine the impact of stage 1 attention cueing 
on a battlefield integration task. While most research on early stage automation has 
focused on the detection of cued targets (as a primary task), this study cued targets of 
relevance to be integrated in forming a situation assessment and a subsequent allocation 
decision. That is, the stage 1 automation used in the present study supported a level 2 
SA task (Endsley, 1995). While the primary performance measure reflected this level 2 
SA (error scores), two converging operations were employed to infer the impact of the 
automation on individual cue processing; the depth of processing memory probe and 
the failure catch trial.  
 
 
Automation costs and benefits  
 
Primary Task Performance. In the non-automated condition, performance on the allocation 
task was reasonable, suggesting that there was some processing of the numerous 
information cues in the time available. However overall, performance with the 
automated cueing aid was superior to unaided performance, with reduced departures 
from the optimal allocation scores in automated conditions. The response times with the 
aid were 1.5 seconds shorter than for the non-automated conditions suggesting that 
automation allowed the participants to make more speeded and accurate allocation 
decisions, presumably by allocating their attention (visual search) initially to the cued 
items. Alternatively, by reducing the perceptual demands of visual search, the 
automation may have availed more cognitive resources for the information component 
of the task (Liu & Wickens, 1992). In general, this finding is consistent with previous 
research on reliable target cueing (e.g., Yeh et al., 1999; Davison & Wickens, 2001), 
however it extends beyond simple detection tasks to higher-level integration tasks.  
 
Depth of Processing. Results from the memory probe revealed a difference in recall for 
high-relevant versus low-relevant units. The improved recall for the more important 
objects suggests that observers are processing these cues more deeply than less 
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important ones. This follows intuitively and lends support to the memory probe as an 
ecologically valid measure of the depth of processing (Craik & Lockhart, 1972). Such 
better recall and deeper processing also explain the degree of optimality of the resource 
allocation scores.  
 
 Previous research has shown that the presence of cued targets detracts attention 
from other uncued targets (e.g., Davison & Wickens, 2001; Yeh et al., 1999; Yeh & 
Wickens, 2001). This finding was not replicated in the present study. Recall scores for the 
low-relevant (uncued) units were equal in both the automated and non-automated 
conditions but still above chance performance, suggesting that the presence of 
automated cues did not have an adverse impact on processing of these units. The 
inconsistencies in the impact of automation on uncued targets between this and prior 
research may be due, in part, to the nature of the tasks employed. As mentioned 
previously, most research has utilized target detection tasks (level 1 SA) to demonstrate 
the tunneling of attention around cued target locations, thus each cue could be 
processed independently of other cues. The current study, however, required 
participants to integrate multiple pieces of information (level 2 SA), a many-to-one 
mapping of cues to task performance. Furthermore, the amount of reduction in RT 
achieved by the cueing, 1.5 seconds, was sufficiently small to suggest that it did not 
eliminate inspection of the uncued items altogether, a conclusion also supported by the 
above-chance accuracy of memory for those uncued items. 
 
 Recall for the attributes of the high-relevant unit exhibited a somewhat different 
pattern of results. The general (non-significant) trend showed inferior recall in the 
automated condition compared to the baseline condition, suggesting that the application 
of automated cueing to these high importance targets may negatively impact the depth 
of processing for these cues. More important was the evidence of a bimodal response 
pattern in the recall scores for the cued high relevance units. This pattern suggests that 
different observers adopted different strategies for interacting with the stage 1 
automation. Observers who had poor recall for the cued target may have failed to attend 
much to the raw data present in the display, attending primarily to the highlighting. For 
example, they may have noted the presence of 2 cued targets in the west and 4 cued 
targets in the east and proceeded to allocate twice as many resources to the east without 
processing these cues at a deeper level. Yeh and Wickens (2001) found a similar response 
bias (beta) in observers who believed the automated system to be highly reliable. In their 
target search study, participants were found to attend more to the information 
suggested by the presence of the cue rather than to the raw data underlying it.  
 
 In contrast, the observers who exhibited good recall in the present study may have 
been using the cueing to direct their attention to the relevant features for deeper 
analyses. This strategy would suggest an increase in sensitivity (d’) to the information in 
the cued target, an effect that was also observed by Yeh and Wickens (2001). No 
differences were found however to suggest a demographic variable which could account 
for the observer type. Are there any implications of these differing beta and d’ strategies 
in the use of automation? The former (beta shift) may be a more efficient strategy under 
time pressure however there will be costs if automation is unreliable, an issue we now 
address. 
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Failure Trial. The failure trial exhibited some degree of evidence for automation induced 
complacency or over-reliance. Roughly half of the participants failed to notice the 
automation failure (an uncued, but highly relevant item) and hence made inappropriate 
allocation responses. On all trials prior to the failure trial, the automation had operated 
reliably, consistently highlighting the most relevant units. Over-reliance and 
complacency are an unfortunate negative by-product of highly (yet imperfect) 
automated systems (Parasuraman & Riley, 1997; Mosier et al., 1998; Metzger & 
Parasuraman, in press). As such, the appropriate level of human interaction with such 
systems must be clarified to ensure safe and efficient use of automation (Bainbridge, 
1983). 
 
 A significant finding relating to the failure trial is the relationships between noticing 
the uncued high-relevant unit in this trial and scores on the memory probe measured on 
earlier trials. These relationships lend further support to the notion that there are 
different (beta and d’) strategies for interacting with the automation. Some observers 
will utilize the automation to get a global sense of the situation and make their response 
on the basis of this high-level assessment. This strategy reduces the cognitive demands 
of the integration task and, given the performance findings, often leads to good 
allocation decisions. However it is in cases where detailed information needs to be 
recalled or when automation is unreliable that this advantage breaks down. 
Alternatively, observers may attend to the local highlighting cues, inspecting each in 
turn.  
 
 While the d’ strategy just described would directly predict an enhanced ability to 
notice that a cued item was not of high relevance (i.e., an automation cueing “false 
alarm”), it is important to realize that the automation failures employed here (and better 
detected by the “noticers”) was of the opposite type: an automation cueing “miss”. Thus 
the quality of deeper cue processing showed by the noticers must have applied to both 
cued and uncued items alike, as their performance on the low relevance memory probe 
would suggest. Subsequent analysis revealed that this differential strategy neither 
slowed nor speeded the overall RT, compared to the non-noticers. 
 
 It would be beneficial to have some measure of eye movements in order to better 
explore these different strategies. Such measures would reveal any differences in visual 
search patterns when observers view the map displays. In their examination of ATC 
conflict detection, Metzger and Parasuraman (2001) found that observers who did not 
notice the automation failure event had fewer fixations and shorter dwell times than 
those who detected it, suggesting the presence of different visual scan strategies for 
interaction with automated systems. 
 
 The presence of such different strategies may have important implications in real-
world design and applications. The nature and conditions of the task will likely dictate 
which strategy is more appropriate. For instance, under time pressure adopting a beta 
strategy (i.e., trust the cues) may be appropriate given that overall allocation 
performance in the automated conditions was good. When time pressure is not 
significant, when a task demands recall for specific target details, or when automation is 



 

 

26 

unreliable or imperfect then a d’ strategy may be the best strategy. In order for 
automated systems to accrue their intended benefits, users must understand how to 
interact with the system appropriately, an end which may be attained through training 
or feedback implementation. 
 
Cue Weighting. These analyses suggested that observer’s judgments were influenced 
differentially by differences in unit size, terrain, and reliability of information. Both 
objective and subjective measures indicated that unit size information had a more 
significant impact on allocation responses than the latter cues.  The military symbol (or 
numerical digit) for unit size was a highly concrete information cue, which may have 
contributed to the strong influence on response patterns. The terrain cue, though a 
concrete (physical, geographical) feature itself, was found to be less influential perhaps 
because the use of this cue required the observer to integrate information about the 
enemy unit and contour lines with information regarding the position of one’s own unit 
(hence, increasing mental workload). Reliability, in contrast, is a more abstract cue than 
the concrete size and terrain cues. That is, reliability is a probabilistic information cue, 
which is often subject to biases in estimation (Tversky & Kahneman, 1981), and not 
always effectively used in judgments (Wickens, Gordon & Liu, 1997). The current 
findings did not suggest any difference in cue influence between reliability (abstract 
probabilistic) and terrain (concrete) cues perhaps due to the graphic display of three 
different levels of reliability. This graphic display may have reduced the abstractness of 
the cue, allowing observers to treat it as if it were a concrete cue.  
 
 
 While certain benefits and costs of stage 1 automation (Parasuraman et al., 2000) are 
expressed in this research, it is less clearly understood how higher stages of automation 
involving automatic diagnosis will impact performance in the battlefield scenario. The 
second study examined stage 2 automation (diagnosis) in the same experimental 
paradigm, such that the costs and benefits of these two stages of automation could be 
directly compared. Parasuraman et al. (2000) suggest that progressively later stages of 
automation, by reducing the amount of cognitive work, can produce greater 
performance benefits if the automation is fully reliable. However, a possible implication 
is that the costs of unreliability might also be amplified at later stages, a finding 
observed by Sarter and Schroeder (2001) when stages 2 and 3 were compared. The 
current study appears to be the first one to contrast stages 1 and 2 within the same 
paradigm. 
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EXPERIMENT 2 
 

METHODS 
 

 
Participants 
 
Twelve students at the University of Illinois volunteered for this second study (ages 22-
33, M = 26). Six men and 6 women made up this group. All participants had normal or 
corrected-to-normal vision and were familiar with topographical (contour) maps. All 
participants were paid $7 US per hour for completing the study. 
 
 
Materials 
 
The experimental set up and battlefield scenarios in this study were the same as those 
employed in the first phase of this research.  
 
Stage 2 Automation. In contrast to the attention guidance automation used in Experiment 
1, this experiment used stage 2 automation. Rather than cueing the most relevant 
(highest threat) units, the automation suggested an appropriate allocation response. 
There was no stage 1 automation (target highlighting) in this part of the study. On a 
given automated trial, two red boxes containing the suggested allocation appeared to 
the east and west of the participant’s unit (see Appendix M). This suggestion was based 
on the optimal allocation as determined by Equation (1). 
 
Memory Probe & Failure. The memory probe trials were similar to those administered in 
Experiment 1. Probes queried size attributes of high- and low-threat units in both 
automated and non-automated conditions. In this experiment, high-threat units were 
not enhanced in the automated condition.  
 
The failure scenario differed from that employed in Experiment 1. In this phase, the 
automation suggested an inappropriate allocation for the displayed units. This 
suggestion failed to consider a very important unit in one direction. The purpose of this 
trial was to determine whether participants were attending to all of the raw data on 
automated trials or rather on the automated aid alone. This element was never the target 
of a memory probe. 
 
 
Procedure 
 
This study followed the same procedure as described in Experiment 1. Participants were 
instructed that the computer’s assessment was only a suggestion and that the final 
allocation decision would be theirs to make. They were told that the automation was 
highly reliable but not perfect (see Appendix N for the revised verbal protocol and 
Appendices O and P for the revised questionnaires). Several scenarios were excluded 
from this phase of the research because some of the displayed units overlapped with the 
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automated aid. The experimental block consisted of 43 trials, including the 2 memory 
probes and 1 failure trial. 
 
 

RESULTS 
 

As in the first phase of this research, absolute difference (error) scores (between the 
predicted and participant’s allocation) were used in the analyses, with smaller difference 
scores indicating more optimal performance. 
 
Allocation Performance. A one-way ANOVA on allocation error revealed a significant 
effect for Display Type (automation, no automation; F(1, 221) = 39.8, p < .001). Overall, 
allocation scores were improved with the automated aid (M = 1.7) compared to without 
(M = 3.0). This finding is consistent with the hypothesis that reliable stage 2 automation 
would benefit performance on an information integration task.  
 
 An ANOVA for response time did not reveal any significant differences between 
the Display conditions (F(1, 221) = .94, p = .33).  
 
Memory Probe. A two-way ANOVA was used to determine the depth of processing for 
high and low relevance units (Relevance) in automation and no-automation conditions 
(Display Type). The results revealed main effects for Unit Relevance (F(1, 20) = 7.0, p = 
.02) and Display Type (F(1, 20) = 8.5, p = .009) (see Figure 8). Scores for the high 
relevance unit were higher (M = 5.7) than for the low relevance unit (M = 4.1), 
suggesting that participants appropriately attended more closely to the highly important 
cues. Recall performance with the automated aid was degraded (M = 4.0) compared to 
the unaided condition (M = 5.8), suggesting that the presence of the automation reduced 
the likelihood of processing the cues more deeply. 

Figure 8. Memory probe scores by unit relevance and display 
type
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 Both main effects can best be interpreted within the context of the significant 
Relevance x Display interaction (F(1, 20) = 10.2, p = .005). As shown in Figure 8, memory 
probe performance in automated conditions was comparable for both the high and low 
relevance units (M = 3.8 and 4.2, respectively). Furthermore, the memory probe scores 
for the low relevance units was equal, independent of automation level. When no 
automation was present, recall for the high relevance unit was higher (M = 7.5) than for 
the low relevance unit (M = 4.0) suggesting that the presence of the automation led to 
less processing of attributes only for the most relevant raw data. 
 
 A two-way ANOVA for memory probe response times did not reveal any main 
effects of Relevance (F(1, 20) = 1.6, p = .22) nor Display Type (F(1, 20) = .38, p = .54). 
There was, however, a significant two-way interaction (F(1, 20) = 8.6, p = .008) of the 
same general form as for accuracy, suggesting a mild speed-accuracy tradeoff (see 
Figure 9). In automated conditions, participants took longer to respond for the low 
relevance probe (M = 22.2) than for the high relevance probe (M = 19.7) whereas in the 
no automation condition, the pattern was reversed (low, M = 18.7; high, M = 25.1). This 
pattern of response times may offer some explanation for the observed memory probe 
scores for these conditions, with higher scores being associated with increased response 
times. That is, quite intuitively, deeper processing requires more time to accomplish. 
 
Failure trial. On the failure trial, the automation made an inappropriate suggestion, one 
that did not consider the presence of a very important unit. The inclusion of this unit 
would have significantly altered the suggested values. Whether a participant noticed the 
unit or not was inferred using the same criterion as in experiment 1. Results suggested 
that roughly half of the participants (5 of 11) failed to notice the high-relevant unit or 
noticed it but opted to allocate their resources according to the automation’s suggestion. 
This finding is consistent with the findings in the first experiment. 

Figure 9. Response times for memory probe by unit relevance 
and display type
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Questionnaire responses. Participants rated the automated aid as being moderately useful 
(M = 2.8 on a 5-point Likert scale) and had mixed comments and criticisms regarding the 
application of such systems (see Appendix Q, for participant responses). Time pressure 
and uncertainty were touted as situations where the automated aid would be beneficial. 
Many participants appreciated the fact that the aid could act as a second opinion for 
diagnosing the situation or as a baseline for reaching a decision. Many expressed 
concerns, however, over the fact that they did not understand how the aid reached it’s 
recommendations or that it sometimes did not agree with their own allocation decision. 
 
Stage 1 versus stage 2 automation. As shown in Figure 10, the different stages of 
automation employed in Experiments 1 and 2 yielded different benefits in performance, 
as expressed in percent reduction in error. The application of stage 1 automation 
(attention cueing) helped reduce allocation error by 13%, while stage 2 automation 
(diagnosis) contributed to a 43% reduction in error. 
 
 

Figure 10. Percent reduction in error by automation stage

0
5

10
15
20
25
30
35
40
45
50

Stage 1 Stage 2

Stage of Automation

%
 R

ed
uc

tio
n 

in
 E

rro
r

 
 

  
 Figure 11 compares the performance on the memory probes across the two 
experiments. Recall performance was similar for low-relevant units for both stages of 
automation (as well as non automated conditions). For the high-relevant units, however, 
performance was worse for the higher stage (2) automation compared to the low stage 
(1), though both automation types were poorer than baseline conditions.  
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Figure 11. Memory probe score by relevance and stage of 
automation.

0
1
2
3
4
5
6
7
8
9

10

Low High Low High

Relevance

R
ec

al
l S

co
re

Automation
No Automation

Stage 1 Stage 2

 
 
 The allocation error scores on the failure trial from the first and second study were 
compared in order to determine whether there were greater costs associated with 
unreliable stage 2 automation versus unreliable stage 1 automation. Positive error scores 
indicated that observers noticed the high-relevant, uncued target whereas negative 
scores indicated a failure to attend to this unit. A t-test did not reveal a significant 
difference across the stages of automation (t(24) = .20, p = .84), though stage 2 
automation had slightly higher costs (M = -.09) than stage 1 (M = .13). Thus while the 
higher stage of automation did, as predicted, lead to shallower processing of highly 
relevant data than the lower stage, such a difference was not seen, in the current results, 
to have implications for a poorer response to unreliability. 
 
 

DISCUSSION 
 
 
Experiment 2 examined the impact of stage 2 automation (diagnosis) on the battlefield 
integration task, with the general purpose of comparing the costs and benefits of stage 1 
and stage 2 automation. 
 
 
Automation costs and benefits 
 
The results revealed that allocation performance with reliable stage 2 automation was 
superior to unaided performance. Optimal performance was moderated to the extent 
that observers trusted and relied on the automation’s suggestions. Alternatively, the 
automated aid provided observers with a starting point (or “ballpark” figure) for 
making their own assessment of the situation. The equivalence in response time across 
display conditions would seem to offer support for the latter. It would be expected that, 
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if participants were to rely solely on the automation’s guidance, the response times 
would be reduced compared to non-automated trials though response accuracy would 
not be degraded (on reliable trials). 
 
Depth of Processing. As in the first study, participants seemed to be appropriately 
attending more to units of higher relevance in the non-automated conditions. However, 
performance was degraded on automated trials, regardless of relevance level (recall for 
both high and low relevance units was comparable). This is consistent with the 
hypotheses that the presence of automation will reduce the depth of processing for 
different cue information. The response times for these trials would seem to suggest a 
mild speed-accuracy tradeoff, with participants scoring higher on trials when more time 
was spent observing the map display.  
 
 As in experiment 1, it appears that the benefits provided by automation also 
produced some costs when the automation was imperfect, with roughly half of the 
participants apparently failing to notice the incorrect automated diagnosis, as inferred 
by their allocation scores. 

 
 

GENERAL DISCUSSION 
 

 
The purpose of Experiment 2 was to allow for some general comparisons of the benefits 
and costs of stage 1 and 2 automation on an information integration task. Performance 
on the defense allocation task was superior with both stages of automation compared to 
the baseline (non-automated) conditions. In study 1, there was a 13% reduction in error 
when the attention guidance automation was included in the battlefield scenarios. 
However in the second study, there was a 43% reduction in errors when the automated 
diagnostic aid provided allocation suggestions. This difference is consistent with the 
notion that higher stage automation, when reliable, will improve human operator 
performance. In experiment 1, the cognitive integration needed to be accomplished 
manually. In experiment 2, this process was carried out by the automation, reducing the 
cognitive demands placed on the operator. 
 
 The downside of highly reliable automation is the potential for users to become 
over-reliant on it (Parasuraman & Riley, 1997; Wickens, 2000). While the greater benefits 
of higher stage automation were clearly expressed in the current research, the associated 
greater costs with higher (than lower) stage automation were not as clear. There was a 
small performance decrement for unreliable stage 2 automation relative to stage 1, 
however this difference was non-significant. This cost analysis, however, was based on a 
single failure trial. It is possible that an examination of automation failures with greater 
statistical power (including different failure types) would yield stronger support for the 
automation-performance tradeoff described above.  
  
 Recall performance on the memory probes suggests that cue attributes of high-
relevant items are processed more deeply with lower stages of automation (stage 1). As 
noted above, this is consistent with stage 1 automation requiring the operator in this 
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paradigm to accomplish the cognitive integration manually, thereby increasing the 
likelihood that high-relevant raw data will be attended. This did not appear to extend to 
low-relevant items. Recall performance suggested that these low relevance cues were 
processed equally across the two experiments. 
 
 
Implications 
 
In general, it has been shown that stage 1 and 2 automation have associated costs and 
benefits for performance on information integration tasks. It is less clearly understood 
how higher stages of automation involving decision selection and action will impact 
performance in such information integration tasks, the impact of repeated failures on 
trust and system use, or the impact of a highly reliable system (long term) on 
complacency. 
 
  The presence of different strategies for interacting with early-stage automation may 
also have a significant impact on our understanding of human interaction with 
automation. It is generally accepted that human performance will vary across different 
levels and stages of automation (Parasuraman et al., 2000). The current research, 
however, suggests that there can be wide variations in human performance at the same 
level and stage of automation, depending on how the automation is used by the 
operator. This makes it more difficult to predict both user performance, as well as the 
impact of imperfect (or unreliable) automation. As was demonstrated by the failure trial 
and the memory probe, different interaction strategies may influence the extent to which 
users will notice automation failures and their ability to recall task-related details (depth 
of processing of the raw data). Understanding these strategies represents a non-trivial 
problem because they will likely vary, not only across systems and tasks but also at 
different stages and levels of automation within the same system. These strategies will 
have a significant impact on the design and extent of automated systems and, in turn, 
their task-specific training programs, which may bear a direct influence on the type of 
strategy a user will employ. 
  
 The rapid advance of computer technology dictates that automated systems will be 
even more widespread in the near-distant future. In the battlefield context, performance 
with such systems will be a function of integrated observations (visual and contextual) 
and judgments, as well as automated information (Serfaty, 1999). Such endeavors must 
strive to assess and incorporate critical elements of battlefield situation awareness (via 
experts, manuals, and doctrine) and their relative mission-related importance in order to 
be of measurable success (Serfaty, 1999). Potential threats to SA aids include terrain and 
weather interference, computer viruses, electronic jamming, spectral interference, 
electromagnetic pulse systems, and anti-satellite technologies (Evans, 1999). However, 
despite these technological and environmental concerns, the overall utility of these 
systems will be linked fundamentally to the human component. 
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Appendix A 
 

Samples of battlefield scenarios 
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Appendix B 
 

Reliability levels of military units 
 
 

 

High Reliability 

Medium Reliability 

Low Reliability 
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Appendix C 
 

Summary information for battlefield scenarios 
 

Scenario 
 

# Enemy 
Units 

Σ IVWest Σ IVEast Optimal 
allocation 

(East) 

# Units with 
IV > 30 
(W / E) 

1 10 24 128 17 0 / 3 
2 10 59 208 16 1 / 4 
3 10 54 22 6 0 / 0 
4 10 62 76 11 1 / 0 
5 10 95 177 13 1 / 4 
6 10 157 178 11 3 / 3 
7 10 151 166 10 2 / 3 
8 10 148 148 10 3 / 2 
9 10 110 47 6 2 / 0 

10 10 180 152 9 3 / 3 
11 10 184 169 10 3 / 3 
12 10 61 31 7 1 / 0 
13 10 101 97 10 1 / 1 
14 10 159 184 11 3 / 4 
15 10 92 108 11 1 / 1 
16 10 184 52 4 3 / 0 
17 10 96 197 13 1 / 4 
18 10 72 188 14 0 / 3 
19 10 139 111 9 2 / 1 
20 10 88 33 5 1 / 0 
21 10 183 118 8 3 / 1 
22 10 232 181 9 4 / 4 
23 10 214 133 8 5 / 2 
24 10 69 62 9 1 / 1 
25 10 172 174 10 3 / 3 
26 10 9 79 18 0 / 0 
27 10 193 210 10 4 / 4 
28 10 93 92 10 2 / 1 
29 10 106 128 11 2 / 2 
30 10 130 164 11 2 / 3 
31 10 120 47 6 2 / 0 
32 10 88 131 12 1 / 3 
33 10 87 74 9 1 / 1 
34 10 84 171 13 1 / 2 
35 10 62 122 13 1 / 0 
36 10 253 144 7 3 / 3 
37 10 126 38 5 3 / 0 
38 10 160 217 12 4 / 4 
39 10 182 170 10 4 / 3 
40 10 60 33 7 0 / 0 
41 10 178 97 7 4 / 2 
42 10 131 125 10 2 / 2 
43 10 31 209 17 0 / 5 
44 10 200 171 9 4 / 2 
45 10 113 54 6 3 / 0 
46 10 116 199 13 1 / 4 
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47 10 147 170 11 3 / 2 
48 10 113 101 9 2 / 2 
49 10 80 62 9 2 / 0 
50 10 180 209 11 4 / 3 
51 10 174 76 6 4 / 1 
52 10 52 108 14 1 / 2 
53 10 112 62 7 2 / 1 
54 10 97 122 11 2 / 2 
55 10 183 215 11 3 / 5 
56 10 152 158 10 3 / 2 
57 10 133 31 4 2 / 0 
58 10 275 199 8 4 / 5 
59 10 119 194 12 1 / 3 
60 10 105 85 9 1 / 1 
61 10 200 71 5 4 / 0 
62 10 23 117 17 0 / 2 
63 10 130 172 11 1 / 3 
64 10 251 256 10 5 / 4 
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Appendix D 
 

Independent observer ratings 
 

 
Six independent observers were shown a series of maps depicting their own unit and 
enemy units varying in size, distance, and (terrain) difficulty of approach. Observers 
were asked to rate the relative threat of each of these enemy units on a ten-point scale (1 
= Low Treat, 10 = High Threat). Raters were instructed to base their assessment only on 
size, distance, and terrain.  
 
Threat scores were collected for 21 different enemy configurations. The median scores 
for each configuration were used as the criterion variable in a multiple regression. 
Predictor variables were the size of the unit (as presented on the map), distance 
(measured in cm from observer’s own unit), and the terrain difficulty (as rated on a four-
point scale by a different set of four observers): 
 

Threat Score = 90 + 4 Xsize – 5 Xdist –14 Xdiff 
 
This formula was modified to account for the type of unit (i.e., enemy vs. neutral or 
friendly) and the reliability of the information (R) to yield the following (Threat Score 
has been renamed Information Value of a particular unit): 
 
(1) IVunit = Xtype(90 + 4 Xsize – 5 Xdist –14 Xdiff) x R,
 
where, Xsize, Xdist, and Xdiff define the unit size, distance, and difficulty of the terrain, 
respectively. R is the overall reliability of the information (from 0 to 1, where R<1 
denotes degraded levels of reliability), and Xtype is the type (1 for enemy units, 0 for 
neutral or friendly).  
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Appendix E 
 

Sample information value calculations 
 
 

A) Unit: Enemy Armored Cavalry, Platoon size, 6 cm (map scale) distance, easy terrain, 
highly reliable information. 

 
 Xtype Xsize Xdist Xdiff R 

Unit 1 4 6 1 .85 
 

 
IVunit = Xtype(90 + 4 Xsize – 5 Xdist – 14 Xdiff) x R 

  = 1 (90 + 4(4) – 5(6) – 14(1)) x (.85) 

  = 54 

 
B) Unit: Enemy Combat Dismounted, Battalion size, 8 cm (map scale) distance, most 

difficult terrain, moderately reliable information. 
 

 Xtype Xsize Xdist Xdiff R 

Unit 1 6 8 4 .50 
 

 
IVunit = Xtype(90 + 4 Xsize – 5 Xdist – 14 Xdiff) x R 

  = 1 (90 + 4(6) – 5(8) – 14(4)) x (.50) 

  = 10 

C) Unit: Neutral Light Infantry, Division size, 10 cm (map scale) distance, easy terrain, 
highly reliable information. 

 
 Xtype Xsize Xdist Xdiff R 

Unit 0 10 10 1 .85 
 

 
IVunit = Xtype(90 + 4 Xsize – 5 Xdist – 14 Xdiff) x R 

  = 0 (90+ 4(10) – 5(10) – 14(1)) x (.85) 

  = 0 
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Appendix F 

Memory probe questions and confidence scale 
 

1) (A) No automation  (B) With automation 
  
 What size was the enemy unit located in the southeast quadrant of the previous 

battlefield display?  
 
2) (A) No automation  (B) With automation 

  
What size was the enemy unit located in the northeast quadrant of the previous 
battlefield display? 

 
 
 

Unit Size 
 

Squad Platoon Company Battalion Division 

1 2 3 4 5 

 
 
 

Confidence Scale 
 

Not at all 
confident  Somewhat 

confident  Very confident 

1 2 3 4 5 
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Appendix G 
 

Informed Consent Form 
 
 

Research Project Title: Supporting Situation Assessment Through Attention Guidance 
 
Investigator(s): William J. Horrey and Dr. Christopher D. Wickens 
 
Description of Research Project: 
 
The purpose of this study is to examine automation in battlefield decision-making. The goal 
is to gain a better understanding as to how information is integrated and processed. Such 
knowledge may help in the development of decision aids or assessment tools which will 
help reduce command and control decision difficulty on the digitized battlefield. For this 
study, you will be shown electronic maps of battlefields and asked to make some defense 
decisions. The study should take no more than 60 minutes to complete. If, at any point 
during the course of this study, you feel uncomfortable you are free to leave without 
penalty. For completing the study you will receive $7. 

 
 

Your signature on this form indicates that you have understood to your satisfaction the information 
regarding participation in the research project and agree to participate. In no way does this waive 
your legal rights nor release the investigators, sponsors, or involved institutions from their legal and 
professional responsibilities. You are free to not answer specific items or questions in interviews or 
on questionnaires. You are free to withdraw from the study at any time without penalty. Your 
continued participation should be as informed as your initial consent, so you should feel free to ask 
for clarification or new information throughout your participation. If you have further questions 
concerning matters related to this research, please contact: 

 
William J. Horrey, Department of Psychology, University of Illinois 

Phone: (217) 244-4461, horrey@s.psych.uiuc.edu 
 

Dr. Christopher D. Wickens, Department of Psychology, University of Illinois 
Phone: (217) 244-8617, cwickens@s.psych.uiuc.edu 

 
 
____________________________________ ______________________________ 
Participant  Date 
 
 
____________________________________ ______________________________ 
Investigator  Date 
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Appendix H 
 

Pre-Experimental Questionnaire: Study 1 
 

Participant _____ 

1. Age   _________    

2. Gender _______    

3. How much ROTC experience do you have? _______ (months/years) 

4. Do you have normal or corrected-to-normal vision?    Yes  No 

 

Please rate your experience with (or understanding of) the following: 

 
 Little or 

none  Moderate  Very high 

5. Contour maps 1 2 3 4 5 

6. Military symbology (e.g., unit 
size, type) 1 2 3 4 5 
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Appendix I 
 

Verbal Protocol: Study 1 
 

General Instructions 
 
Provide participant with informed consent. 
 
Thank you very much for participating in this study.  It should take approximately 75 
minutes to complete.  I would like to remind you that you are free to withdraw from this 
study at any time.  Please look through the informed consent. 
 
Participant reads / signs forms. 
 
Do you have any questions? 
 
To begin with, I will ask you to fill out this brief questionnaire.  It will ask you a few 
background questions. 
 
Participant fills out questionnaire. 
 
Today I will show you some electronic maps of battlefields. Your unit is positioned in 
the center of the map. Your task will be to observe the other units in the area and decide 
from which direction an enemy attack is more likely. Based on this decision, you will 
allocate your defensive resources accordingly. 
 
I’d like to over some of the things you’ll need to pay attention to when making your 
assessment. We have attempted to match the symbols to the standard military ones you 
may be familiar with. Here is a small sample of symbols used here (Show instruction 
image 1).  
 
First of all, note the colour and shape of the symbols. Enemy units are marked by 
DIAMONDS, neutral units are marked by SQUARES, and friendly units are marked by 
RECTANGLES. You’ll note that inside of each shape is a unit type (e.g., light infantry or 
engineers – combat dismounted). For the purposes of this study, this unit type will not 
be important and can be ignored, only whether or not the unit is an enemy, neutral, or 
friendly. 
 
The second piece of information that will be important to you is the size of the particular 
unit. This information is located just above the symbol. In this study, we used the 
symbols (from smallest to largest) for Squad (•  or 1), Platoon (•••  or 5), Company (| or 
6), Battalion (|| or 7), and Division (XX or 10). In the maps scenarios that you will view, 
smaller units will be considered less of a threat than larger ones.  
 
Do you have any questions about these symbols? During the study, you’ll have this cue 
card as a reminder. 
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Show Map 1. 
This map is characteristic of what you will see during the study. Your unit will always 
located in the center of the screen with other units scattered to the east and west. In 
addition, there will be other map elements such as cities, towns, roads, and railroads. 
 
The third piece of information that will be important to you is the distance from the unit 
to your position. Of course, closer enemy units may be more of a threat than ones that 
are further away. I say ‘may’ here, because this threat will be influenced by the fourth 
piece of important information, the difficulty of terrain between units.  
 
(Point to different regions of contour lines). Are you familiar with the use on contour lines 
on maps? (If so then, you’ll know that) A contour line connects points on the land that 
have the same elevation. In general, contour lines that are close together, like here, 
indicate a region where the terrain is steep and more difficult to traverse than a region, 
such as here, where the lines are further apart (and therefore relatively flat). For this 
study, the exact contour interval is not important, only the relative difficulty of regions 
on the same map. 
 
It is important that you use both the distance information and the difficulty of terrain to 
determine how accessible you are for a particular unit. For instance, a smaller force that 
is more distant over easy (flat) terrain may be more of a threat than a larger force that is 
nearby over difficult terrain (point to map).  
 
Do you have any questions? 
 
The final piece of information that you will need to consider is the reliability of the 
information being displayed on the map. During actual combat situations, a commander 
may be presented with reports and information that is very unreliable versus 
information that is highly reliable (confirmed). For this study, the border of the symbol 
will note the reliability of the units. (Show instruction image 2) Here you can see three 
types of border: the solid border will denote highly reliable information (confirmed), a 
dashed border will denote information that is of medium reliability, and a dotted border 
will denote very unreliable information. 
 
 
So, now you have all the required information that you will need to determine the threat 
of a particular unit: the type (enemy, neutral, or friendly), the size of force, the distance 
from your position, the difficulty of the terrain, and the reliability of the information. 
The overall likelihood of an attack from the east or west should be assessed based on the 
integrated value of all the units on each side of the map (that is, the sum threat of each 
unit in the east versus that of the west). 
 
Do you have any questions so far? 
 
I know this task seems to be quite an undertaking – you’ll be pleased to hear however 
that on some of the trials you will have an aide to help in your assessment. On these 
trials, the computer will automatically assess the battlefield and enhance only the units 
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that are of highest threat. All other units will appear normal, as these enhanced units 
will pulse from low to high intensity. The purpose of this automation is to guide your 
attention to the most relevant units on the battlefield, perhaps saving you from having 
to do so yourself. We note that items that are not highlighted are not necessarily 
irrelevant, that is, they can pose some threat to you. They are simply deemed to be less of 
a threat than the highlighted units. 
 
Do you have any questions? 
 
(Show Map 2) 
Here is a sample of what a battlefield may look like. This is your position in the center. 
As you can see, other units are distributed to the east and west of your position. You will 
need to assess the overall threat from each direction and then allocate 20 “units” of 
defensive resources to either side of your positions. For example, if you decide that the 
threat from the east is 50% greater than for the west, you could allocate 12 resources to 
the east side and 8 to the west side. There are no correct or incorrect responses here, but 
you should try to match the relative threat and your allocation as closely as possible. Is 
this clear? 
 
A few final points that will help you as you go through the scenarios, 
- You can assume that all units will approach your position on a straight (direct) path. 
Like so. 
- All units on the map are acting independently from one another. They will not 
interfere with one another or impede other’s progress.  
- All neutral (and of course friendly) units are NO threat to yourself. 
 
You will be viewing 56 different battlefield scenarios (including practice). Each will start 
with a brief instruction screen. Press any key and the trial will start. You will have up to 
35 seconds to observe the map. If you are ready to respond before this time is up, press 
any key and you will be taken to the response screen, where you can input the number 
of units allocated in either box (the other will fill in automatically). After responding, 
you can press any key to start the next trial (whenever you are ready). On a few rare 
occasions we may ask you about the identity of a specific cue following the scenario. 
 
Now I will show you some practice trials so you can get used to the task at hand. 
 
Any questions before we begin? 
 
Show practice block.  
 
Any questions? 
 
When you are ready, I will start the next segment. There are 35 trials total. The 
automatic aid will appear on some, but not all of the trials. 
Have fun! 
Show experimental blocks. 
Give participant post-experimental questionnaire.  Go through form with participant. 
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Answer questions. 
Thank and remunerate participant. 
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Appendix J 
 

Post-Experimental Questionnaire: Study 1 
Participant_____ 

 
Please rate the following cues on their information value (i.e., how important they were) for 

your task: 
 

 Not at All 
Informative 

Slightly 
Informative 

Moderately 
Informative 

Very 
Informative 

Extremely 
Informative 

1) Size of Unit 1 2 3 4 5 

2) Distance from 
your Unit 1 2 3 4 5 

3) Difficulty of 
Terrain (between 
unit and your 
position) 

1 2 3 4 5 

4) Type of Unit (e.g., 
enemy, friendly) 1 2 3 4 5 

5) Reliability of 
Information 1 2 3 4 5 

 
 

6) When deciding how to allocate your defensive resources, the automation feature was: 
 

Not at All 
Useful Slightly Useful Moderately 

Useful Very Useful Extremely 
Useful 

1 2 3 4 5 

 
 
 
7) Did you encounter any problems or difficulties while using the map display? If so, please 
describe. 
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8) Under what conditions would you consider using the automation feature to help guide 
your attention in a real battlefield situation? 
 
 
   
 
 
 
9) Did the enhancements help you notice potential threats? 
 
 
 
 
 
 

10) Did the enhancements interfere with your ability to allocate resources accordingly? 
 
 
 
 
 
 
11) What did you like about the enhancements? 
 
 
 
 
 
 
12) What did you dislike about the enhancements? 
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Appendix K 
 

Experimental Scenario Blocks: Study 1 
 

Order 1 2 3 4 
34 (A) 24 34 24 (A) 
51 (A) 15 51 15 (A) 
44 (A) 11 44 11 (A) 
46 (A) 5 46 5 (A) 

4 57 4 (A) 57 (A) 
6 32 (A) 6 (A) 32 

660 (MP 1) 56 (A) 660 (MP 1, A) 56 
63 40 (A) 63 (A) 40 

42 (A) 59 (A) 42 59 
48 (A) 50 (A) 48 50 
43 (A) 14 43 14 (A) 
55 (A) 35 55 35 (A) 

13 23 13 (A) 23 (A) 
21 17 21 (A) 17 (A) 
19 770 (MP 2, A) 19 (A) 770 (MP 2) 
26 36 (A) 26 (A) 36 

49 (A) 30 (A) 49 30 
39 (A) 60 (A) 39 60 
33 (A) 1 33 1 (A) 
47 (A) 16 47 16 (A) 

18 61 18 (A) 61 (A) 
12 28 12 (A) 28 (A) 
3 38 (A) 3 (A) 38 

22 64 (A) 22 (A) 64 
7 (A) 53 (A) 7 53 

53 (A) 7 (A) 53 7 
64 (A) 22 64 22 (A) 
37 (A) 2 37 2 (A) 

25 12 25 (A) 12 (A) 
62 18 62 (A) 18 (A) 
8 45 (A) 8 (A) 45 
1 29 (A) 1 (A) 29 

60 (A) 39 (A) 60 39 
31 (A) 49 (A) 31 49 
41 (A) 26 41 26 (A) 

770 (MP 2, A) 20 770 (MP 2) 20 (A) 
17 21 17 (A) 21 (A) 
23 10 23 (A) 10 (A) 
27 54 (A) 27 (A) 54 
9 52 (A) 9 (A) 52 

50 (A) 48 (A) 50 48 
58 (A) 42 (A) 58 42 
40 (A) 63 40 63 (A) 
56 (A) 660 (MP 1) 56 660 (MP 1, A) 
32 (A) 6 32 6 (A) 

57 4 57 (A) 4 (A) 
5 46 (A) 5 (A) 46 

11 44 (A) 11 (A) 44 
15 51 (A) 15 (A) 51 
24 34 (A) 24 (A) 34 

 
Scenario # 

(A = automation; 
MP = Memory 

Probe; F = Failure) 

990 (F, A) 990 (F, A) 990 (F, A) 990 (F, A) 
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Appendix L 
 

Participant Responses: Study 1 
 

 
Under what conditions would you consider using the automation feature to help 
guide your attention? 
- under time pressure (7) 
- at a very high level of command (Brigade or higher) 
- night and low visibility or dense vegetation 
- if it was very reliable information (i.e., truly told me where the strong units 

were located) 
- best used when moderate amounts of time is available so that the most likely 

area of first contact would be covered. It would be less effective when there is 
little time to plan. 

- when there are many different enemy units in various locations, clutter (3) 
- in situations where terrain or enemy locations is unclear 
- when reliability of all information on screen is moderate to low and distance 

and terrain are similar for all enemy units 
- maybe to consult with once I made a decision (to see what the automation 

would have suggested) 
- when trying to quickly decided which area had either a larger force or relatively 

easy terrain to cross to reach my position 
 
 
Did the enhancements help you notice potential threats? 
- in some cases (3) 
- yes (15) 
- not really. The enemy units (diamond shape) were sufficiently distinct. (2) 
 
 
Did the enhancements interfere with your ability to allocate resources 
accordingly? 
- no (13) 
- I tried not to let that happen. There were a few times when the enhancement 

did not highlight a large enemy unit so I allocated ‘against’ the enhancements. 
- yes, sometimes a squad level enemy was flashing, drawing my attention when I 

should have been paying more attention to larger units further away. 
- somewhat. I found it hard to focus on other enemy elements. (2) 
- I sometimes ignored it 
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What did you like about the enhancements? 
- it’s a quick way to determine potential threats (2) 
- it did help discriminate enemy forces from the extra info (friendly/neutral) (3) 
- drew my attention to potential threats immediately (2) 
- made me more alert, provided a more interactive situation  
- allowed me to focus on what were the most important areas to allocate 
- highlighted larger forces that were further away that might otherwise have 

been ignored 
- it gave you info about the importance (threat) of a particular unit 
- it appears to be an easy way to organize a great deal of information 
- it identified possible enemy threats that were more dangerous 
- most times, it pointed out units which had easier terrain 
- when I had little time to make a decision, it helped me focus in on something 
- helped allocate attention where needed in a cluttered display 
- it reduced my scan time 
- provided a starting point for situation assessment 
- helped me recall where I had seen enemy units 
 
 
What did you dislike about the enhancements? 
- they could have a tendency to distract your attention from a potential hazard 
- it made it more difficult as a person to attempt to consider the enemy forces that 

were not highlighted 
- sometimes they were overwhelming when everything on the screen was 

enhanced 
- I sometimes ignored items not enhanced (2) 
- sometimes it assess threats differently than I would have (3) 
- sometimes there were too many. Also, it was difficult to decide how low 

reliability and flashing interacted. 
- I would have liked a color display (i.e., red indicating greater risk) 
- not reliable enough (3) 
- size of enemy unit sometimes did not seem to convey the amount of threat that 

was present with other flashing units 
- distracting (3) 
- I don’t know if I would always trust a computer 
- did not understand how computer decided on what was the biggest threats (2) 
- imposed a secondary task (i.e., assessing computer’s judgment in addition to 

my own) 
- I may have relied on it too much when making my decision 
- I spent time trying to figure out why some enemies were enhanced 
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Appendix M 
 

Sample battlefield scenarios with automated aid: Study 2 
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Appendix N 
 

Verbal Protocol: Study 2 
 

General Instructions 
 
Provide participant with informed consent. 
 
Thank you very much for participating in this study.  It should take approximately 45 
minutes to complete.  I would like to remind you that you are free to withdraw from this 
study at any time.  Please look through the informed consent. 
 
Participant reads / signs forms. 
 
Do you have any questions? 
 
To begin with, I will ask you to fill out this brief questionnaire.  It will ask you a few 
background questions. 
 
Participant fills out questionnaire. 
 
Today I will show you some electronic maps of battlefields. Your unit is positioned in 
the center of the map. Your task will be to observe the other units in the area and decide 
from which direction an enemy attack is more likely. Based on this decision, you will 
allocate your defensive resources accordingly. 
 
I’d like to over some of the things you’ll need to pay attention to when making your 
assessment. We have attempted to match the symbols to the standard military ones you 
may be familiar with. Here is a small sample of symbols used here (Show instruction 
image 1).  
 
First of all, note the color and shape of the symbols. Enemy units are marked by 
DIAMONDS, neutral units are marked by SQUARES, and friendly units are marked by 
RECTANGLES. You’ll note that inside of each shape is a unit type (e.g., light infantry or 
engineers – combat dismounted). For the purposes of this study, this unit type will not 
be important and can be ignored, only whether or not the unit is an enemy, neutral, or 
friendly. 
 
The second piece of information that will be important to you is the size of the particular 
unit. This information is located just above the symbol. In this study, we used the 
symbols (from smallest to largest) for Squad (1), Platoon (5), Company (6), Battalion (7), 
and Division (10). In the maps scenarios that you will view, smaller units will be 
considered less of a threat than larger ones.  
 
Do you have any questions about these symbols? During the study, you’ll have this cue 
card as a reminder. 
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Show Map 1. 
 
This map is characteristic of what you will see during the study. Your unit will always 
located in the center of the screen with other units scattered to the east and west. In 
addition, there will be other map elements such as cities, towns, roads, and railroads. 
 
The third piece of information that will be important to you is the distance from the unit 
to your position. Of course, closer enemy units may be more of a threat than ones that 
are further away. I say ‘may’ here, because this threat will be influenced by the fourth 
piece of important information, the difficulty of terrain between units.  
 
(Point to different regions of contour lines). Are you familiar with the use on contour lines 
on maps? (If so then, you’ll know that) A contour line connects points on the land that 
have the same elevation. In general, contour lines that are close together, like here, 
indicate a region where the terrain is steep and more difficult to traverse than a region, 
such as here, where the lines are further apart (and therefore relatively flat). For this 
study, the exact contour interval is not important, only the relative difficulty of regions 
on the same map. 
 
It is important that you use both the distance information and the difficulty of terrain to 
determine how accessible you are for a particular unit. For instance, a smaller force that 
is more distant over easy (flat) terrain may be more of a threat than a larger force that is 
nearby over difficult terrain (point to map).  
 
Do you have any questions? 
 
The final piece of information that you will need to consider is the reliability of the 
information being displayed on the map. During actual combat situations, a commander 
may be presented with reports and information that is very unreliable versus 
information that is highly reliable (confirmed). For this study, the border of the symbol 
will note the reliability of the units. (Show instruction image 2) Here you can see three 
types of border: the solid border will denote highly reliable information (confirmed), a 
dashed border will denote information that is of medium reliability, and a dotted border 
will denote very unreliable information. 
 
(Show instruction image 3) 
So, now you have all the required information that you will need to determine the threat 
of a particular unit: the type (enemy, neutral, or friendly), the size of force, the distance 
from your position, the difficulty of the terrain, and the reliability of the information. 
The overall likelihood of an attack from the east or west should be assessed based on the 
integrated value of all the units on each side of the map (that is, the sum threat of each 
unit in the east versus that of the west). 
 
Do you have any questions so far? 
 
(Show Map 2) 
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Here is a sample of what a battlefield may look like. This is your position in the center. 
As you can see, other units are distributed to the east and west of your position. You will 
need to assess the overall threat from each direction and then allocate 20 “units” of 
defensive resources to either side of your positions. For example, if you decide that the 
threat from the east is 50% greater than for the west, you could allocate 12 resources to 
the east side and 8 to the west side. There are no correct or incorrect responses here, but 
you should try to match the relative threat and your allocation as closely as possible. Is 
this clear? 
 
I know this task seems to be quite an undertaking – you’ll be pleased to hear however 
that on some of the trials you will have an aide to help in your assessment. On these 
trials, the computer will automatically assess the battlefield and suggest an appropriate 
allocation of defensive resources. This is only a suggestion, you are free to allocate your 
defenses however YOU deem appropriate. This automation is, in general, highly reliable 
however is not perfect.  
 
Do you have any questions? 
 
 
A few final points that will help you as you go through the scenarios, 
- You can assume that all units will approach your position on a straight (direct) path. 
Like so. 
- All units on the map are acting independently from one another. They will not 
interfere with one another or impede other’s progress.  
- All neutral (and of course friendly) units are NO threat to yourself. 
 
You will be viewing 48 different battlefield scenarios (including practice). Each will start 
with a brief instruction screen. Press any key and the trial will start. You will have up to 
25 seconds to observe the map. If you are ready to respond before this time is up, press 
any key and you will be taken to the response screen, where you can input the number 
of units allocated in either box (the other will fill in automatically). After responding, 
you can press any key to start the next trial (whenever you are ready). On a few rare 
occasions we may ask you about the identity of a specific cue following the scenario. 
 
Now I will show you some practice trials so you can get used to the task at hand. 
 
Any questions before we begin? 
 
Show practice block.  
 
Any questions? 
 
When you are ready, I will start the next segment. There are 43 trials total. The 
automatic aide will appear on some, but not all of the trials. 
 
Have fun! 
Show experimental blocks. 
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Give participant post-experimental questionnaire.  Go through form with participant. 
Answer questions. 
Thank and remunerate participant. 
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Appendix O 
 

Pre-Experimental Questionnaire: Study 2 
 

Participant _____ 
 

1. Age   _________    

2. Gender _______    

3. Do you have normal or corrected-to-normal vision?    Yes  No 

 

Please rate your experience with (or understanding of) the following: 

 
 None  Moderate  Very 

High 

4.    Contour maps 1 2 3 4 5 

5. Military symbology (e.g., unit size, 
type) 1 2 3 4 5 
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Appendix P 
 

Post-Experimental Questionnaire: Study 2 
 

Participant_____ 
 

Please rate the following cues on their information value (i.e., how important they were) for your 
task: 
 

 Not at All 
Informative 

Slightly 
Informative 

Moderately 
Informative 

Very 
Informative 

Extremely 
Informative 

1) Size of Unit 1 2 3 4 5 

2) Distance from 
your Unit 1 2 3 4 5 

3) Difficulty of 
Terrain (between 
unit and your 
position) 

1 2 3 4 5 

4) Type of Unit (e.g., 
enemy, friendly) 1 2 3 4 5 

5) Reliability of 
Information 1 2 3 4 5 

 
 

6) When deciding how to allocate your defensive resources, the automation feature was: 
 

Not at All 
Useful Slightly Useful Moderately 

Useful Very Useful Extremely 
Useful 

1 2 3 4 5 

 
 

 
7) Did you encounter any problems or difficulties while using the map display? If so, please 

describe. 
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8) Under what conditions would you consider using the automation feature to help in 
battlefield decision making? 

 
 
 
 
 
 
9) What did you like about the automation? 
 
 
 
 
 
 
10) What did you dislike about the automation? 
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Appendix Q 
 

Participant Responses: Study 2 
 
 
Under what conditions would you consider using the automation feature to help 
in battlefield decision-making? 
- when knowing its reliability and how it makes its decisions 
- under time pressure (4) 
- low threat conditions 
- with supervision / review of experienced operator 
- if shown to be very reliable in generating appropriate decisions 
- if I was actually in battle, I’d almost have to trust the computer’s risk 

assessment. For this particular task, I relied more on the computer when the 
cues were in conflict (i.e., bigger but more distant or closer but less reliable) 

- if I’m unsure and want a second opinion (to validate my impression of the 
situation) 

- conditions of uncertainty (3) 
- in complex situations 
 
 
 
What did you like about the automation? 
- helped focus attention to the side with more enemies (2) 
- made it easier to go from those numbers to double-check using the map (2) 
- fairly accurate 
- usually appropriate decision suggested – used as a “ballpark” figure to assess 

threat (2) 
- it gave me a baseline for allocating defense units 
- offered a second opinion for difficult decisions (2) 
- helped shape my assessment of the situation 
- could use it to figure out how the computer weighed the various cues (2) 
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What did you dislike about the automation? 
- didn’t know what the decisions were based on (2) 
- sometimes, I didn’t agree with the numbers the computer generated (but it’s 

hard to contradict a computer) 
- it was sometimes more conservative and sometimes more extreme (than I) 
- did not seem to take enemy distance into account 
- seemed inaccurate in some instances (4) 
- potential to bias operator’s assessment 
- it lowered my confidence and influenced my choices more than I would have 

liked 
- another distraction (though more useful) 
- uncertain of its reliability (after it differed from my own decision) 
- did not provide any reasoning behind the suggestion 
- often disagreed with it and second guessed myself as a result (2) 
 




